

 Navigation

 	
 index

 	dapple latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/dapple/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/dapple/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	dapple latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		dapple latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/minus.png

dappfile.html

 Navigation

 		
 index

 		dapple latest documentation »

dappfile

Your pacakge’s dappfile contains all the settings necessary to set up dependencies and compile your package’s code properly. It is a YAML file with the following structure:

		name: The name of the dapple package. (Required)

		version: The version of the dapple package. (Required)

		source_dir: By default, Dapple will process all source files in the project’s root directory and its descendants. It will also interpret imports relative to the project’s root directory during the build process. This setting overrides this behavior and allows you to specify a subfolder of the project to use instead.

		ignore: A list of filenames to ignore. Globbing [https://en.wikipedia.org/wiki/Glob_%28programming%29] is supported.

		preprocessor_vars: Variables to pass in for your preprocessor or templating engine to use in its rendering context. Dapple uses cogapp [http://pypi.python.org/pypi/cogapp] by default.

		contexts: A mapping of environment names to constants and their values. Constants may be inserted into smart contract source code at any point via CONSTANT:"some_constant".

		dependencies: A mapping of the names of dapple packages this package depends on to the specific versions of those packages required, or to the specific location to load the package from. A value of “latest” signifies that the latest version should be used.

You may use dot notation to collapse nested mappings. In other words, this:

contexts:
 prod:
 NAME_REG: "0x..."

Can be shortened to this:

contexts.prod.NAME_REG: "0x..."

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/file.png

glossary.html

 Navigation

 		
 index

 		dapple latest documentation »

Glossary

There’s some internal jargon that we use which you might find floating around in our documentation from time to time. Here’s what most of it means:

Chain fork: Forking public chains off into private chains is a core part of testing with Dapple. This allows you to test against the state of the blockchain your package will eventually be deployed to at any given height, giving you a 100% reproducible testing environment that can refer to the real addresses of real contracts. This also means your tests can run in parallel without inadvertantly changing the shared state each depends on and causing random failures.

Package path: The location of a given package in the dependency hierarchy relative to your root package. Since each dependency in your package may rely on different versions and variations of the same package, each one keeps its own copy of its dependencies within its own directory. The path to the core package your package relies on is simply core, while the path to the core package relies on is <some other dependency>.core.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/plus.png

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/ajax-loader.gif

constants.html

 Navigation

 		
 index

 		dapple latest documentation »

Constants

Constants are addresses defined via the contexts keys in a package’s dappfile. Each context refers to a different chain environment and follows this structure:

		contexts
		default - This is the default context when no context is specified.
		<some constant name> - Keys and values defined at this level are constant names and values.

		<some context> - You can define any other context name you like. Follows the same structure as default.

To refer to constants in your smart contract code, use CONSTANT(<your constant name>). For example, given a dappfile containing this:

contexts:
 default:
 namereg: '0x01010101'

You could do this:

NameReg myNameReg = NameReg(CONSTANT(namereg));

Constants in dependencies

You can also refer to any constants defined in your dependencies via dot notation. So if the core package had a namereg constant, you could use it like this:

NameReg officialNameReg = NameReg(CONSTANT(core.namereg))

You can use the same dot notation, also called the package path, to override constants in your dependencies as well:

contexts:
 default:
 'core.namereg': '0x010101'

Such overrides only affect your package’s copies of the dependencies referred to, of course.

Undefined constants

Any undefined constants referred to will end up in the hex code output, allowing Dapple to replace them on the fly when running your deploy script. If your dappfile didn’t contain the constant definition above, you might end up seeing something like this:

$ dapple build
{'Example': {'bin': '606060405269__CONSTANT(namereg)__600060006101000a81548173ff02191690830217905550600a8060456000396000f360606040526008565b00', 'abi': '[]', 'interface': 'contract Example{}'}}

 © Copyright .
 Created using Sphinx 1.3.1.

plugins.html

 Navigation

 		
 index

 		dapple latest documentation »

Plugins

Every aspect of Dapple’s core behavior is defined in terms of overrideable plugins. Plugin discovery is achieved via the plugins file in your package’s .dapple directory. The plugins file is just a newline-delimited list of Python modules that Dapple will import each time it runs, before attempting to parse any arguments or commands. To write plugin, just write a Python module that does all its setup in its __init__.py file.

We have provided a few hooks into Dapple to facilitate plugin development:

		dapple.cli - Contains a cli object, which is an instance of the Group [http://click.pocoo.org/5/api/#click.Group] class, and a click variable, which is a reference to the Click [http://click.pocoo.org/5/api] module Dapple uses.

		dapple.plugins - Programmatic access to different functions defined by plugins.

Creating subcommands

The cli object in dapple.cli allows you to register new Dapple commands. For example, to create a command called hello that just prints out Hello World!:

from dapple.cli import cli

@cli.command()
def hello():
 print "Hello World!"

For more information, check out Click’s documentation on the Group [http://click.pocoo.org/5/api/#click.Group] class. The cli object is nothing more than an instance of that class.

dapple.plugins

dapple.plugins.registry is a module-level instance of the PluginRegistry [https://github.com/MakerDAO/dapple/blob/master/dapple/plugins.py#L7] class. This is hte registry plugins are registered with by default. Provides load and register functions, which the module-level register decorator and load function wrap.

dapple.plugins.load is a function that takes a plugin function name and returns the function registered under that name.

dapple.plugins.register is a decorator that takes a name to register the decorated function under. By convention, the name should be prefixed with the plugin’s name, like so:

@dapple.plugins.register('core.dappfile')
function load_dappfile(package_path='', env=None):
 ... # plugin code

Any plugin loaded afterward can then get a reference to the function through dapple.plugins.load:

load_dappfile = dapple.plugins.load('core.dappfile')
dappfile = load_dappfile()

You may also override plugin functions by registering new functions by the same name after the original function has been registered:

@dapple.plugins.register('core.dappfile')
function my_dappfile(package_path='', env=None):
 # In case you want to use the original function somewhere.
 original_func = dapple.plugins.load('core.dappfile')
 dapple.plugins.registry.register('core.old_dappfile', original_func)
 ... # your altered plugin code

 © Copyright .
 Created using Sphinx 1.3.1.

quickstart.html

 Navigation

 		
 index

 		dapple latest documentation »

Quickstart

A note before starting

Throughout this documentation, I use words in to denote where you should fill in values of your own choosing. I have endeavored to make the angle-bracketed phrases self-explanatory and consistent. For example, I use to denote the name you choose for your package. Anywhere you see , you should be able to fill in the same value you chose initially and do alright.

Installation

On the command line:

git clone https://github.com/MakerDAO/dapple
cd dapple
python setup.py install

Package creation

On the command line:

mkdir <mypackage>
cd <mypackage>
dapple init

Dapple packages are defined by the presence of a .dapple directory containing a dappfile YAML file. dapple init creates this structure for you. Edit .dapple/dappfile in your directory to, at minimum, list your package’s name and version. By default, the core package is included as a dependency of all new packages. The core package contains the contracts that Dapple relies on to run tests on your smart contract package.

Package installation

From within your package’s root directory:

dapple install <somepackage> --save

The --save flag tells Dapple that it should add the package to your dependencies map in your dappfile. Without this flag, Dapple would install the package without adding it to your dappfile. Generally, Dapple tries to make it obvious when it’s about to change your dappfile. Running install sans the --save flag lets you try packages locally without making a mess of your dappfile in the process.

To remove packages, use uninstall:

dapple uninstall <somepackage> --save

Package publishing

Publishing a package is as simple as:

dapple publish

You must, however, have a copy of IPFS [http://ipfs.io/] running and your .dapplerc pointed at it to publish anything. By default, Dapple connects to a public read-only gateway maintained by the IPFS developers to allow package installation without a local copy of IPFS. Publishing cannot be done through such a gateway.

 © Copyright .
 Created using Sphinx 1.3.1.

dapplerc.html

 Navigation

 		
 index

 		dapple latest documentation »

.dapplerc

Your .dapplerc file contains Dapple’s global settings. It can be found in your home directory.(The ~ command line path for OS X and Linux users.)

.dapplerc is a YAML [http://yaml.org/] file with the following structure:

		ipfs - Settings related to connecting to IPFS.
		host - The hostname for the IPFS node. Can start with ‘http://’ or ‘https://’.

		port - This port on the IPFS node to connect to. Usually 80 or 8080 for read-only gateways and 5001 for full nodes.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-close.png

